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In this work, an attempt is made to gain a better understanding of the breakage of low- 
viscosity drops in turbulent flows by determining the dynamics of deformation of an 
inviscid drop in response to a pressure variation acting on the drop surface. Known 
scaling relationships between wavenumbers and frequencies, and between pressure 
fluctuations and velocity fluctuations in the inertial subrange are used in characterizing 
the pressure fluctuation. The existence of a maximum stable drop diameter d,,, 
follows once scaling laws of turbulent flow are used to correlate the magnitude of the 
disruptive forces with the duration for which they act. 

Two undetermined dimensionless quantities, both of order unity, appear in the 
equations of continuity, motion, and the boundary conditions in terms of pressure 
fluctuations applied on the surface. One is a constant of proportionality relating root- 
mean-square values of pressure and velocity differences between two points separated 
by a distance 1. The other is a Weber number based on turbulent stresses acting on the 
drop and the resisting stresses in the drop due to interfacial tension. The former is set 
equal to 1, and the latter is determined by studying the interaction of a drop of 
diameter equal to d,,, with a pressure fluctuation of length scale equal to the drop 
diameter. The model is then used to study the breakage of drops of diameter greater 
than d,,, and those with densities different from that of the suspending fluid. 

It is found that, at least during breakage of a drop of diameter greater than dmaS by 
interaction with a fluctuation of equal length scale, a satellite drop is always formed 
between two larger drops. When very large drops are broken by smaller-length-scale 
fluctuations, highly deformed shapes are produced suggesting the possibility of further 
fragmentation due to instabilities. The model predicts that as the dispersed-phase 
density increases, d,,, decreases. 

1. Introduction 
The breakage of liquid drops suspended in another liquid phase has been studied by 

many workers since the pioneering work of Taylor (1934). Taylor studied the 
behaviour of drops in well-defined flow fields at low Reynolds numbers both 
experimentally and theoretically. Drop behaviour in low-Reynolds-number flows has 
since been studied extensively using more sophisticated experiments (Bentley & Leal 
1986) as well as exact numerical computations (Stone, Bentley & Leal 1986; Stone & 
Leal 1989). The breakage of drops in turbulent flows is also of considerable interest 
since turbulent liquid-liquid dispersions are used extensive11 in the chemical industry 
for effecting mass and/or heat transfer between two immiscible liquids. In contrast to 
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drop behaviour in low-Reynolds-number flows, though considerable work has been 
done to investigate drop breakup in turbulent flows, the understanding of the process 
is still at an elementary stage. 

The earliest known theoretical treatment of drop breakup in turbulent flows has 
been for the case of low-viscosity dispersed phase. Kolmogorov (1949, cited by Levich 
1962) and Hinze (1955) argued that drops larger than a certain size d,,, cannot exist 
indefinitely in a turbulent flow. They proposed that a drop of size I breaks when the 
pressure fluctuations across the drop caused by velocity fluctuations exceed the forces 
due to surface tension that resist breakage, i.e. 

__ 
pe U 2 ( I ) P  > d, (1.1) 

__ 
where u2(E) is the mean-square relative velocity between two points separated by a 
distance I ,  and CT is the interfacial tension between the two phases. Here, the same 
length scale is used for the size of the eddy and the drop since it is assumed that a drop 
can be broken most easily by an eddy of size equal to its diameter. This of course is 
consistent with the generally accepted principle that eddies transfer most of their 
energy to eddies ~ that are nearly of their own size. Batchelor (1967) has given an 
expression for ~ ‘ ( 1 )  valid in the inertial subrange as 

where 6 is the power 
estimate for dmax: 

The above expression 

~ 

U y I )  - ( 4 2 1 3 ,  (1 3 
dissipation per unit mass. Substituting this, one arrives at the 

has been widely used, and the proportionality constant has been 
experimentally determined for stirred vessels and other important equipment. 

While this approach successfully predicts d,,,, it does not throw any light on the 
process of breakage itself. Thus, it is not clear whether the size of the drop and the 
length scale of velocity fluctuation 1 should be equal for breakage to occur. Further, 
neither the time required for fragmentation of a drop bigger in size than d,,, nor the 
size distribution of daughter droplets formed by breakage is known. The number and 
sizes of the daughter droplets formed depend on the course taken by the drop as it 
extracts energy from the surroundings on its way to breakage and are not obtained 
within the framework of the existing models. Calculation of breakage frequency 
involves determination of time of breakage as well as the frequency with which a drop 
encounters eddies that will succeed in breaking it. It has often been assumed that 
breakage results in two daughter droplets of equal size (Laso, Steiner & Hartland 
1987). If this were the case, one would expect the drop size distribution to have one 
peak corresponding to the daughter droplets formed by the breakage of drops of 
diameter greater than d,,,. In the absence of formation of satellite droplets of any 
other size, there would be no drops of volume smaller than v,,,/2 where u,,, is the 
volume of a drop of diameter d,,,. These expectations are not supported by 
experimental observations. Further, there is experimental evidence in favour of 
formation of multiple daughter droplets in a breakage event. Hinze (1955) has shown 
that at high Weber numbers drops disintegrate in a rather chaotic manner. His 
experiments show a large number of daughter droplets being formed. 

Information regarding both breakage frequency and daughter droplet size 
distribution is necessary to determine the drop size distribution. Mechanistic models do 
exist for dispersed phases of moderate and high viscosity for calculating the breakage 
frequency. They are one-dimensional in nature and contain ad hoc assumptions 
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regarding breakage criteria and mode of breakage (Arai et al. 1977; Lagisetty et al. 
1986; Nambiar et al. 1992). Thus, there is a need to address these issues from a more 
fundamental viewpoint. 

The essential feature of the work of Kolmogorov and Hinze is the visualization of 
drop breakage in turbulent flows as a result of deformation of drops forced by 
turbulent pressure fluctuations. In a turbulent flow field, if a pressure fluctuation on the 
surface of the drop acts for the lifetime of an eddy that deforms it in some direction, 
it is unlikely that the next pressure fluctuation on the surface of the drop will act in a 
coherent manner to continue the deformation process. Dropeddy interactions occur 
in a random manner and not in any cooperative fashion. It seems, therefore, likely that 
a drop breaks under the influence of a single fluctuation. The fact that the successful 
theoretical estimates provided by Kolmogorov and Hinze for inviscid drops do not 
involve any time scale (except perhaps that implied by t, and 1) also seems to suggest 
the same. In modelling the breakage of viscous drops, Lagisetty et al. (1986) and 
Davies (1985) have also used the lifetime of an eddy as the scaling parameter for 
estimating the effect of viscosity of the dispersed phase. The success of these models 
also indicates that even moderately viscous drops perhaps break under the influence of 
a single pressure fluctuation. Given the complexity of turbulent flows, therefore, one 
possible approach to understand more about drop breakage in turbulence is to study 
the deformation of drops under the influence of a single external pressure fluctuation. 
This viewpoint is explored in the present work. 

In this work, an attempt has been made to study the deformation and breakage of 
an inviscid drop under the influence of a pressure variation that occurs on its surface. 
While simplifying assumptions have been made for tractability, the evolution of the 
shape of a drop under the action of external stresses is followed until it breaks into two 
or more fragments. Thus, an arbitrary breakage condition is not necessary, and it is 
also possible to learn about the number of daughter droplets formed in a breakage 
event. 

Another issue of fundamental interest is the existence of a maximum stable drop 
diameter. This has been questioned recently by Lam et al. (1996), who found that the 
value of d,,, decreases with the duration of the experiment. They argue that, due to 
intermittencies 117 turbulence, pressure fluctuations much greater than the root-mean- 
square value can occur, and given enough time, drops of any size will eventually 
encounter disruptive forces large enough to break them. However, the very large 
disruptive forces generated by intermittency are also expected to have a shorter lifespan 
than the corresponding root-mean-square value. Given that drop fragmentation does 
require a finite amount of time, it is not clear that intermittency per se rules out the 
existence of d,,, . We show in the present work that the existence of d,,, follows once 
scaling laws of turbulent flow are used to correlate the magnitude of the disruptive 
forces with the duration for which they act. 

2. Drop behaviour under the influence of a pressure field 
In this section, we study the behaviour of an inviscid liquid drop under the influence 

of a pressure variation imposed on its surface for a certain period of time. For this 
purpose we need to specify the magnitude, shape and duration of the pressure 
fluctuation as well as the initial state of deformation in the drop. For concreteness, we 
choose conditions and parametric values typical for turbulent flow. 

The sizes of the smallest drops that can be broken by turbulent eddies lie in the 
inertial subrange (Levich 1962). We therefore consider a pressure fluctuation with a 
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length scale 1 belonging to the inertial subrange. The pressure ~ difference __ across such an 
eddy of size I is then assumed to be proportional to p,u2(1) where u2(1) is the mean- 
square relative velocity between two points separated by a distance 1. As a simple case, 
since solving a three-dimensional problem is computationally expensive, we consider 
only axisymmetric fluctuations. We make a further simplification that the pressure 
variation on the drop surface is symmetric about its equator. More precisely, the 
pressure fluctuation on the surface of a drop is represented by 

__ 
pezt(z, t )  = cp, uz(Z) sin (ot) cos (2nz / l ) ;  0 < t < 27c/o, (2.1) 

where z is the distance from the equator of the drop, and ~ c is a constant yet to be 
determined. Batchelor (1967) has given an expression for ~ ‘ ( 1 )  valid in the inertial 
subrange as 

In (2. l), 2 x / o  is the duration of a pressure fluctuation of wavelength 1 (wavenumber = 
2n/Z). As we adopt parameters typical of high-Reynolds-number turbulent flow, we 
follow the appropriate scaling rules. Accordingly, we identify o with the frequency, 
W(K)  associated with an eddy of wavenumber K. Tennekes & Lumley (1972) give the 
relationship, 

7 (2.3) W ( K )  = C11/2 € 1 / 3  K2/3  

where E is the energy dissipation rate per unit mass and CI is the constant of 
proportionality in the expression for the energy spectrum in the inertial subrange, given 
by the equation 

and has a value of approximately 1.5 (Batchelor 1967). In terms of the length scale, the 
frequency is given by all2 

Nothing can be said apriori about the initial deformation and the velocity field inside 
the drop as it encounters successive pressure fluctuations in a turbulent flow. We 
therefore study the response of an undeformed drop to the action of the pressure 
fluctuation acting on its surface. 

u2(1) = 4.82~t (s l )~’~ .  (2.2) 

E(K) = K - ~ / ~ ,  (2.4) 

(27~/ l )”~ .  

2. I .  Governing equations 
It is assumed that the flow is irrotational inside the drop. The equations of continuity 
and motion then become 

v-v = 0, (2.5) 
a v  1 --+v.vv = --vp, 

P d  a t  

where pd is the density of the dispersed phase. 
As the flow is assumed to be irrotational inside the drop, the velocity is written as 

the gradient of a potential, i.e. v = V$. Substituting this for v in the equations of 
continuity and motion gives 

V2$ = 0,  (2.7) 

t J  v-+;v(v$.v$) a$ = -v - . 
at 

It follows from (2.8) that 

-+;(v$-v$)+- a$ P =At). 
at P d  
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As the drop fluid is incompressible, it is sufficient to determine only the spatial 
gradients of pressure rather than the absolute values. As this is true of q5 as well, the 
right-hand side of (2.9) can be set equal to zero. This amounts to determining the 
velocity potential and pressure within an arbitrary additive constant. Thus, 

26, 1 P -++ ;?V(V~.OQ)+-  = 0. 
c't P d  

(2.10) 

2.2. Boundary condition 
As the drop fluid is inviscid and the stress acting on the surface of the drop by the 
external fluid is pexf(R(H, t ) ,  H, 0, the normal stress balance at the drop surface is 

p(R(H,t),B,t) =P""(R(H, t ) ,H, t )+nV~.n .  0 d t < 27~/0, (2.11) 

where r = R(H. t )  is the shape of the drop surface, n is the unit outward normal on the 
surface and the surface gradient operator V ,  is given by 

V,? = ( / - n n ) . V .  

3.3. Initial conditions 
For reasons that have been explained earlier, the following initial conditions are used : 

a t t = O ,  r , l = O ,  O d r d o ,  O d H d x  (2.12) 

and R(H,O) = a. (2.13) 

Given Q on the surface of the drop at any given time. (2.7) can in principle be solved 
to determine Q everywhere inside the drop. The velocity field can then be obtained. 
However, it is possible to compute with considerably less effort the velocities on the 
surface, using the boundary integral method. Since we are interested in determining the 
shape of the drop as a function of time, i t  is sufficient to compute surface velocities. In 
order to trace the history of the drop, however. it is necessary to know how the 
boundary condition varies with time, i.e. how 0 varies with time on the boundary. This 
is obtained from (2.10) which is valid everywhere in the drop including on its surface. 
Applying this equation to any point on the surface by substituting for p from the 
normal stress balance (2.11). we obtain 

This is solved for Q(R(0, t). 0, I )  with the initial conditions 
(2.14) 

Q(R(H. 0 ) ,  H ,  0 )  = 0, R(H, 0 )  = a.  (2.15) 

The evolution of the shape of the drop in time can thus be traced for any given 
external pressure distribution py "(0, t ) .  

2.4. Non-dimrnsionalization of' the gocerning equations 
The ~ length scale 1 is chosen as the characteristic length and (m)"', l/(-)"' and 
pr ~ ' ( 1 )  as the characteristic velocity, time and pressure, respectively. With the same 
symbols as in the dimensional equation (2.14), the dimensionless equation then is 

(T 
pCxt(R(H. r ) ,  0, t )  + - V 5 . n )  = 0,  (2.16) 

PI Wl) 
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where the dimensionless external pressure and the dimensionless frequency are given 

pest(R(8, t ) ,  8, t )  = c sin (wt) cos (2nz) (2.17) by 

and (2.18) 

The dimensionless initial condition is 

+(R(O, 0), 8,O) = 0,  R(8,O) = i d / l ,  (2.19) 

where d is the diameter of the drop. 
Equation (2.16) has three dimensionless parameters __ : the constant of proportionality 

c which is contained in pest (see 2. I)), the group pe lu2(l)/a which is a Weber number, 
and the density ratio pc/pd. In addition, the initial condition has a dimensionless 
parameter, namely the ratio d/Z. Using (2.2), we obtain for the Weber number, the 
equation 

4.82apc e2I3 $ I 3  We = 
G- 

(2.20) 

The local energy dissipation rate per unit mass, E ,  depends on the geometric and 
kinematic variables pertaining to the turbulent flow of interest. It is now necessary to 
explicitly bring into the equations the diameter of the drop, d. Thus, we express We as 

4 . 8 2 0 1 ~ ~  &'I3 d5/3(l /d)5/3 

Substituting for the Weber number in (2.16), we obtain 

We = 
(T 

(2.21) 

t)' " t, + ;[V$(R(B, t), 8, t )  * V$(R(O, t ) ,  8, t)] 
a t  

t),  8, t )  + __ 1 0- (!!r3vs.n} = 0. (2.22) 
4 . 8 2 ~ ~ ~ ~  e2/3 d5I3 I 

The dimensionless angular frequency w is determined by (2.18). This gives a value of 
approximately 0.247 for the dimensionless frequency w/2n. We fix this value at +. The 
angular frequency w is therefore equal to 2n/4. There are two other undetermined 
dimensionless quantities in (2.22). These are the dimensionless amplitude of the 
pressure fluctuations c, which is contained in pext, and the Weber number We defined 
by (2.20). The considerations based on which the values of these quantities are fixed are 
explained below. 

2.5. The concept of the maximum stable drop diameter 
Equation (2.22) has two undetermined constants, namely c, which is contained in pest, 
and 6, which is contained in We defined by (2.20). Both these constants appear in the 
terms enclosed by curly braces on the left-hand side of (2.22). During the first quarter- 
cycle of the imposed fluctuation, the gradient of the external pressure tends to elongate 
and break the drop. In general, till the drop gets pinched off somewhere, surface 
tension tends to restore the spherical shape. The first term inside the braces of (2.22) 
represents the forces tending to deform the drop while the second term represents the 
forces resisting the former. The magnitudes of the two terms are determined by the 
constants c and We. It can therefore be concluded from (2.22) that increasing c or We 
leads to larger deformation and hence to easier breakage. Thus, for a given value of c 
and d/l ,  there exists a minimum value of We which leads to breakage of the drop. 

The validity of this argument is of course contingent upon the validity of the scaling 
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relationships among the various quantities that have been used in non-dimensionalizing 
the governing equations. These relationships are expected to apply to high-Reynolds- 
number turbulent flows. As stated earlier, the concept of maximum stable drop 
diameter in turbulent flows is linked to the condition where the drop diameter and 
length scale of the pressure fluctuation are equal. By setting d = I ,  the concept of 
maximum stable drop diameter readily follows from the above argument. Since 
W e  = c/(pc E ~ / ' ~  d 5 / 3  ), there exists a minimum value for the diameter of the drops which 
can be broken, and the value can be determined once the two constants c and s are 
known. 

We can now examine the applicability of the above arguments in the presence of 
large pressure ~ fluctuations caused by intermittency. In the above arguments, we have 
used s, u2(1), and (0, which represent temporal averages of these quantities. Actually, 
each of these quantities has a distribution of values, i.e. an eddy of a given __ size has a 
distribution of energies and frequencies. These __ quantities are correlated as ~ ' ( 1 )  - ( ~ 1 ) ' ' ~  
and - c1/:3 1 - 2 / 3  . This is equivalent to w - ( U ' ( I ) ) ' ' ~ / Z .  __ Let us assume that the constants 
of proportionality in the correlations __ between ~ ' ( 1 )  and the pressure fluctuation, as well 
as in the correlations of E with ~ ' ( 1 )  and w __ remain valid for any single period of the 
fluctuation. Then, the scaling rule o - (uz(l))'/ '/Z remains valid for any single 
fluctuation as well, ~ and the dimensionless frequency will always have the same value. 
Now if instead of ( ~ ~ ( 1 ) ) " '  a value of velocity fluctuation characteristic of dissipation 
in a single period of fluctuation is used for the purposes of non-dimensionalization, the 
dimensionless equations also remain unaltered. Thus, the minimum value of We 
established also remains unaltered. However, with the new scaling, s in 

as long as t' remains bounded, a value for the maximum ~ stable drop diameter will exist, 
and it will be lower than that calculated using u'((l). Moreover, as the frequency of 
occurrence of fluctuations in power dissipation decreases as the magnitude of the 
fluctuation increases, it is quite likely that the observed value will decrease slowly with 
the duration of the experiment. 

If we call the maximum stable drop diameter d,,, and the Weber number 
corresponding to a pressure fluctuation of length scale equal to d,,, Wemin, we can 
write 

Wemiri = 4.82up, s2l3 d:i&,/n. (2.23) 

In the present case, the constants c and Wemin are both unknown. However, if either 
of them is fixed arbitrarily, the other can be determined by doing computations for 
interactions between a drop of diameter d,,,. and a pressure fluctuation of length scale 
d,,,. Alternatively, if We is fixed, the minimum value of c for which breakage occurs 
can be determined. The former alternative was chosen in the present case. The order 
of magnitude of c can be obtained from the following relationship derived by 
Oboukhov (1949, quoted in Batchelor 1967, p. 183): 

p"1) = p '{U;( I )} ' .  (2.24) 

Here, u;(I) is the mean-square value of the longitudinal component of the relative 
velocity between two points separated by a distance I .  This suggests that the value of 
c must also be of order unity. Hence, we set c = 1 in our model. 

Once we associate Wemin with a pressure fluctuation of length scale d,,,, the Weber 
number corresponding to any such pressure fluctuation in the inertial subrange can be 
calculated. As can be seen from (2.20), the Weber number corresponding to a pressure 
fluctuation of length scale x times d,,, is x5/3 Wemin. We use this relationship to study 
the behaviour of drops of size other than d,,,. 

W e  = rr/@, s 2 , 3  d 513 ) is the dissipation rate characteristic of a single fluctuation. Hence, 

~ ___ 

~ 
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3. Solution of the governing equations 
As has already been stated, we intend to study the evolution of the shape of a drop 

as a function of time in response to stresses imposed on the boundary. For this, it is 
sufficient to determine the velocity of the fluid everywhere on the surface of the drop 
at any instant. The boundary integral method was therefore chosen for solving the 
equation for the velocity potential inside the drop. The generalized vortex method 
developed by Baker, Meiron & Orszag (1980, 1982, 1984) and applied by Lundgren & 
Mansour (1988) to the study of free oscillations of inviscid drops was used. In this 
method, the velocity potential is expressed as a function of a surface distribution of 
dipoles, the density of which can be determined knowing the value of the potential on 
the surface. The surface distribution of dipoles is equivalent to a vortex sheet as there 
is a jump in the tangential component of the velocity across the surface. Thus, 

where g(rP, r )  = - 1/(4x 1 rP - r I). Here, r represents the position vector of a point, ,u 
the dipole density, suffix P denotes a fixed point P, all quantities without the suffix P 
refer to any point Q on the boundary S and a/dn is the derivative in the direction of 
the outward normal on the boundary at Q. The integration is with respect to Q. Thus. 
r means rq, and $p and ,u mean $(rp) and ,u(rQ), respectively. The procedure described 
by Lundgren & Mansour (1988) for an axisymmetric problem was used except that $ 
and ,u were approximated by piecewise cubic polynomials in arclength s over the 
boundary. The integrations with respect to time were done using the Runge-Kutta-Gill 
method. 

The length of the time step required for a given order of accuracy decreases as the 
interface velocity increases and as the spacing between the nodes on the interface 
decreases. The following empirical equation was used, after every step, to calculate the 
length At of the next time step: 

where vmaz is the maximum magnitude of the velocity obtained on the interface from 
computations for the current time step, s, is the arclength along any meridian, n is the 
number of elements into which the meridian is divided and (At),,, is a value At will 
never exceed. By using different values for (Af),az, and comparing the results, it was 
found that a value of 0.005 was adequate and was used in all the computations. 

4. Results and discussion 
We first present computations made to validate the computer program. We then 

proceed to present the results of calculations made to fix Wemin. Finally, we present the 
effects of various parameters on drop behaviour. 

4.1. Validation of the computer program 
Our program was used to solve the problem of free oscillations of an inviscid drop with 
a given initial distribution of the velocity potential # on its surface. This problem has 
been solved by Lundgren & Mansour (1988). Computations were made for one and a 
quarter periods of oscillation of the drop and our results agreed very well with the 
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FIGURE 1 .  The shape of the drop at different times and variation of the distance of the tip of the drop 
from the equator with time for c = 1.0, w = 27~14, a l l  = 0.5, d/d,n,, = 1.0, pJpd = 1.0 and 
We = 2.41, 

graphs presented by Lundgren & Mansour. The computations in the present work were 
made with piecewise cubic approximations for the unknowns on the boundary, 
whereas Lundgren & Mansour (1988) approximated the value over each element by 
that at the midpoint of the element. They used 100 nodes on the boundary. When there 
is symmetry about the equator, therefore, there are SO nodes on each half. We used 15 
elements on each half of the boundary. The number of numerical integrations needed 
to assemble the matrix with SO elements using the method of Lundgren & Mansour 
(1988) is 50 x SO = 2.500, whereas with I S  cubic elements, it is 15 x 15 x 4 = 900. Thus, 
there is a saving on computational effort. Lundgren & Mansour (1988) used time- 
smoothing in their work to remove short-wavelength fluctuations. This was not 
necessary in our computations up to the point at which computations are presented. 

4.2. Determination of Wemin 
The results of computations made to determine the value of Wemin are shown in figures 
1 and 2. In these figures, the shapes of the drops at different times are shown. The 
coordinate of the tip of the drop is also shown as a function of time. These 
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FIGURE 2. As figure 1 but for We = 2.42. 

computations were made with c = 1.0, w = 2n/4 and pJpd = 1.0. As mentioned 
earlier, the size of the drop and length scale of the pressure variation should be equal 
for determining d,,,. Hence, a/Z, where a is the radius of the drop, is set equal to f. As 
has been stated in 53, at each instant, attention is focused on a material point and 
integration with respect to time is done by the Runge-Kutta-Gill method. The new 
position of each material point is therefore obtained from the computed velocity. Just 
before breakage occurs, the drop forms a neck. At some point in time, the diameter of 
this neck will be extremely small. At this juncture, long-range and short-range 
intermolecular forces may become important, and the continuum model itself may 
become invalid. These details have not been taken into account in the present work. 
Instead, as numerical integration is done with respect to time, when the interface 
crosses the axis of symmetry at any point, the drop is assumed to be broken. To some 
extent, this breakage condition depends on the length of the time steps used. However, 
to make the computations as objective as possible, the same strategy, described in 53, 
was used to choose the length of the time steps in all computations. 

As the angular frequency w was chosen to be 2n/4, the time taken for one full cycle 
of the imposed pressure fluctuation is 4. It is seen from figure 2 that breakage occurs 
for W e  = 2.42 in the second quarter of this cycle. In contrast with this, for We = 2.41, 
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FIGURE 3. Time of breakage as a function of Weber number for c = 1.0, o = 2x14, a l l  = 0.5, 
d/d,,, = 1.0 and pJp, = 1.0. 

the results of which are presented in figure 1, the diameter of the neck at the equator 
of the drop reaches a minimum value and then increases. For the form of the 
fluctuation assumed, during the first half-period the pressure at the equator of the drop 
is greater than at the neighbouring points on either side. During the second half of the 
cycle, the situation is reversed. The magnitude of the pressure gradient at the equator 
of the drop increases during the first quarter of a cycle, reaches a maximum and 
decreases during the second quarter. Thus, while the external pressure tends to squeeze 
the drop at the equator during the first half-period, the strength of this squeezing force 
reaches a maximum at the end of the first quarter and decreases to zero at the end of 
the second quarter. As the drop is squeezed at the equator, it gets elongated. 
Consequently, the resistance to deformation due to interfacial tension increases. 
During the second quarter of the cycle, a point is reached when the resisting force 
becomes stronger than the squeezing force due to the external pressure. In the absence 
of inertia, the direction of net flow within the drop would reverse at this instant. This 
reversal is delayed by the inertia of the drop fluid. Thus, the drop attains a maximum 
deformation a short time after one quarter of the period of the fluctuation. If the drop 
does not pinch off at this point, it does not break within the period of the imposed 
fluctuation. It is seen that the minimum value of We for breakage to occur in the first 
period is approximately 2.42. We accept this as the minimum value of We required for 
breakage to occur and call this We,,,. The value of Wemin is thus determined within 
an error of 0.01. 

Computations were made with several values of We to arrive at the above value of 
We,,,. The time taken for breakage decreases as the Weber number increases as shown 
in figure 3 ,  as expected. The time of breakage increases more steeply with decrease in 
We as We,,, is approached. For We < Wemin, breakage does not occur within one 
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FIGURE 4. The shape of the drop at different times and variation of the distance of the tip of the drop 
from the equator with time for c = 1.0, w = 27114, a l l  = 0.5, d/d,,, = 1.050, p,/p, = 1.0 and 
Wemin = 2.42. 

cycle of the pressure fluctuation. As has already been explained, we then consider the 
drop to be stable. This also admits the following interpretation. Each computation 
with W e  > 2.42 can be regarded as one with d/d,,, > 1 and d = 1. For such cases, the 
time of breakage is smaller and it increases steeply as the drop diameter approaches a 
value equal to d,,,. For d/d,,, < 1, the drop does not break within one cycle of the 
imposed pressure fluctuation. These drops are deemed to be stable under the 
conditions, i.e. for the prevailing value of e. 

4.3. Breakage of drops of diameter greater than d,,, with d = 1 
Accepting 2.42 as the value of Wemin, we proceed to study the breakage of a drop of 
diameter greater than d,,, with d = 1. The results are shown for d/d,,, = 1.05 in figure 
4. It is seen that the dimensionless time of breakage decreases as the drop size is 
increased beyond d,,,. Further, breakage occurs farther away from the equator as the 
drop size increases. Results obtained for d/d,,, = 1.025, though not shown, reveal the 
same features except that the size of the satellite drop is smaller. It is possible that 
satellite droplets are always formed during breakage. The formation of satellite 
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droplets during pinch-off has been reported by Mansour & Lundgren (1990) in their 
study of inviscid capillary jet breakage and by Tjahjadi, Stone & Ottino (1992) in 
viscous capillary breakup. Studying satellite drop formation requires very fine 
resolution of the drop surface near the point of breakage and has not been undertaken 
in the present work. It is clear, however, that during the breakup of drops of diameter 
considerably greater than d,,,, at least one big satellite drop is formed at the centre, the 
size of which increases as the size of the parent drop increases. This can be interpreted 
as follows. 

Breakage is preceded by the formation of a neck. This is because, as the drop is 
elongated, the curvature at its ends is greater than at the equator. As the deformation 
increases, the difference in curvature at these points increases. The higher curvature at 
the ends drives the fluid towards the equator with a force which increases with time 
during the phase in which the elongation of the drop increases with time. On the other 
hand, the squeezing force due to the external stresses first increases, reaches a 
maximum at the end of a quarter of a cycle and then decreases. When the force due 
to surface tension gains dominance over the external forces and the inertia of the drop 
fluid, the drop takes the shape of a dumb-bell, with two bulbous portions connected 
by a neck. The length of the neck depends on the fraction of the drop in which the 
restoring force due to interfacial tension dominates over external forces and inertia. 
Since the amplitude of the pressure fluctuations - P’ and the cross-sectional area of 
the drop - d 2 .  the net forces due to external pressure - d8’’. The inertia of the drop 
fluid - d“. The force due to interfacial tension - d, as the curvature - a‘’ and the 
cross-sectional area - d’. Thus, for larger drops, the external forces and inertia are 
more dominant and, hence, the fraction of the drop in which the forces due to 
interfacial tension dominates over these forces is smaller. Consequently, the neck is 
longer and pinching off takes place at a greater distance from the equator. 

4.4. Breakage of’ drops of’ diameter greater than drta.r I.t.ith 1 < d 
For a drop to break, the energy required to create new surface has to be supplied by 
the pressure variation on the surface. While surface energy per unit volume - d- l ,  the 
kinetic energy per unit volume generated by the pressure fluctuation - P3.  Thus, a 
drop of diameter greater than d,,,. can be broken by a pressure fluctuation on a smaller 
length scale. Though Nambiar et ul. (1992) propose that such a mechanism does exist 
in turbulent stirred dispersions, there has been no validation of such a hypothesis. 

We have investigated the breakage of very large drops by pressure fluctuation on 
smaller length scales. Figure 5 shows the results of the interaction of a drop of diameter 
10 times with a fluctuation of wavelength equal to the drop radius, i.e. u/l  = 1. 
In this case, the pressure on the drop is compressive at the poles as well as the equator. 
Therefore, when the drop is being squeezed at the equator, it is also being pushed 
inward at the poles. The axial length of the drop therefore decreases with time and an 
umbrella-like shape results, as shown in figure 5. The highly deformed shapes produced 
suggest the possibility of further breakage taking place due to instabilities which are 
not axisymmetric. A large number of daughter droplets may then be formed. In this 
context we might recall the experiments of Hinze (1955) in which breakage results in 
large number of daughter droplets at high Weber numbers. Drop size distribution data 
obtained from stirred turbulent dispersions, when fitted to population balance 
equations, also indicate that large drops break into multiple fragments (Narsimhan, 
Nejfelt & Ramkrishna 1984). The predictions of the present calculations are in 
agreement with these observations. Similar results were obtained for a drop of 
diameter 5 times d,,,, but they are not shown here. 
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FIGURE 5.  The shape of the drop at different times and variation of the distance of the tip of the drop 
from the equator with time for c = 1.0, w = 27c/4, a l l  = 1.0, d/dm,, = 10.0, p,/p, = 1.0 and 
Wemin = 2.42. 

4.5. Effect of pe/pd 

Another parameter that can affect breakage is the ratio of the densities of the 
continuous and dispersed phases. Computations were done for cases in which the drop 
and the suspending fluid have different densities. Here we determine d,,, by trial and 
error, assuming that the values of c and Wemin determined for the case of equal 
densities are valid. 

Computations were done to determine d,,, for pc/pd = 0.8 and 1.2. The deformation 
patterns of drops were similar to those observed for pe/pd = 1.0 and hence are not 
shown. For the former case, d,,, was found to lie between 0.98 and 0.99 times (d,,,), 
while for the latter case it was found to lie between 1.01 and 1.02 times (d,,,,),, where 
(dmaJl is the value of dma, for pc/pd = 1.0. Similar computations were done for 
pc/pd = 0.75 and 1.25. However, since d,,, can be determined only by trial and error, 
it was not attempted to resolve it more closely than 0.01 times (d,&. With this 
resolution, the value of d,,, for pJpd = 0.75 was found to be in the same interval as 
for pc/pd = 0.80, i.e. between 0.98 and 0.99 times (dmaJl .  Similarly, the value of d,,, 
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for pL./pd = 1.25 was found to be in the same interval as for pc/pd = 1.20, i.e. between 
1.01 and 1.02 times (dniaJ1 .  However, the breakage time was found to increase 
monotonically with increase in pc/pd,  indicating that within this range of the density 
ratio, d,,, also increases with increase in pc/pd.  

Thus, our calculations indicate that d,,, decreases with increase in dispersed-phase 
density. This dependence is weak, and cannot be discriminated experimentally. The 
effect of density comes through the inertia of the drop fluid and is difficult to predict 
a priori. If the density of the drop fluid is greater than that of the surrounding fluid, 
its acceleration in the initial stages of its interaction with a pressure fluctuation is lower, 
but its deceleration in the later stages is also lower. Whether breakage becomes easier 
or harder depends on which of these two effects is more important. It appears from the 
result of our computations that the latter is more important. This trend is opposite to 
what is known to be the case for viscous drops broken in turbulent stirred vessels 
(Calabrese, Chang & Dang 1986). However, the effect of density difference on d,,, for 
the case of low-viscosity drops does not seem to have been reported so far. 

The predictions made using this approach of course depend on the form assumed for 
the pressure fluctuation which affects not only the time required for breakage but also 
the mode of breakage, i.e. the sizes and shapes of the daughter droplets formed. Thus, 
while the approach is useful in gaining a better qualitative understanding of the 
mechanism of breakage, it cannot directly be used for quantitative predictions of drop 
size distributions. 

4.6. Application to drop breakage in a stirred vessel 
The above model can be applied to the process of breakage __ of drops in a stirred vessel. 
This is done using the available correlations for c and u2((l) in a stirred vessel. The local 
value of c in a stirred vessel depends on the vessel and stirrer dimensions, the stirrer 
speed and position. For geometrically similar vessels, we have the correlation 

c = C’ N 3  D2,  (4.1) 

where N is the impeller speed in rotations per unit time, D is the diameter of the 
impeller and the constant of proportionality c’ is a function of position in the vessel. 
Substituting for e in the expression for We, we obtain 

Setting d/E = 1 and d = d,,,,, we obtain 

-- d,,, - ( ~ We,in)315( cr )3‘5 

D 4 . 8 2 ~ ’  p c N 2 D D ”  ’ (4.3) 

which is the well-known relationship first proposed by Hinze (1955) for inviscid drops. 
The order of magnitude of Wemin can be predicted using the following relationship 

(Lagisetty et al. 1986) for d,,,, which is in agreement with experimental data: 

Comparing (4.4) with (4.3), we obtain 

4.82ac‘ W e .  =- 
32 ’ 

min  (4.5) 
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Since the energy dissipation rate per unit mass e is a function of position in the stirred 
vessel, so is c’ (see (4.1)). For a vessel fitted with a Rushton turbine impeller, c’ has an 
average value of about 0.4 (Coulaloglou & Tavlarides 1977) and a maximum about 10 
times the average. Since, dmaz and Wemin are determined by the maximum value of c’, 
using a value of 4 for c’ in (4.5) gives Wemin of order unity, indicating that the forces 
due to turbulence in the suspending fluid and those due to interfacial tension are of the 
same order of magnitude. This prediction is confirmed by our computations which 
yielded a value of 2.42 for Wemin assuming a value of unity for c. 

5. Conclusions 
We have studied the deformation and breakage of an inviscid drop of diameter d 

under the influence of an axisymmetric pressure variation acting on its surface for a 
fixed period of time. The pressure variation was characterized by a length scale 1. We 
assumed that the magnitude of the pressure variation and its duration correlate 
according to the scaling observed for length scales lying in the inertial range of 
turbulent eddies. The equations contain a constant c, which determines the magnitude 
of the non-dimensional pressure fluctuation, and Weber number We, which represents 
the ratio of the forces due to surface tension that resist deformation and the pressure 
forces. For d = 1 the results show that if c is fixed, there exists a minimum value for 
Weber number Wenain below which breakage cannot occur. This implies that for a 
given level of the pressure fluctuation, drops of size below a certain diameter d,,, 
cannot be broken in a single period of the pressure fluctuation. The value of Wemin has 
to be fixed by computations, and was found to be 2.42 within an error of 0.01. For 
I = d, when drops of diameter greater than d,aas are broken, breakage always takes 
place away from the centre. Therefore, at least one satellite droplet is always formed 
in these cases. Further, the size of the satellite drop thus formed increases as the size 
of the parent drop increases. It was also found that breakage was posible when I d d 
for d 2 dma,. Under these conditions, highly deformed shapes are produced, suggesting 
the possibility of further fragmentation due to instabilities to form multiple drops. 

Existing models of drop breakage in turbulent flows are largely one-dimensional in 
nature, have used ad hoc breakage conditions and assumed binary breakage. Binary 
breakage is not in conformity with observations. A more fundamental approach is 
called for to shed some light on these issues. The results obtained here qualitatively 
agree with observations of drop breakage in turbulent flows. Our approach enables us 
to determine whether a drop breaks by actually following its shape and an arbitrary 
breakage criterion is not necessary. It also indicates the formation of multiple daughter 
droplets upon breakage of a parent drop. The present approach needs further 
examination after relaxing some of the assumptions made. 
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